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The structurally related indolocarbazole alkaloids (+)-K252a1,2

(1) and (+)-staurosporine3 (2) have attracted considerable attention
due to the unique asymmetrical structure of the cycloglycoside
moieties as well as the strong PKC inhibitory activity. Many
efforts have been directed toward the regioselective synthesis of
the N-monoprotected aglycon moiety of K252a.4 While Wood
and co-workers have recently completed an efficient total
synthesis of (+)-K252a,5 they failed to solve the regiochemical
problem of the cycloglycosidation, resulting in the formation of
a 2:1 mixture of the desired product3 and its regioisomer4. In

their total synthesis of (+)-staurosporine, Danishefsky and co-
workers also obtained a 1:1 mixture of the regioisomeric
intermediates.6 Herein we report a completely stereocontrolled
total synthesis of (+)-K252a, which is applicable to the synthesis
of a range of indolocarbazolyl glycosides.

Regiospecific bromination7 of indole6, prepared by allylation
of indole-3-acetic acid (5), was performed by treatment with NBS
to give 2-bromoindole7 (Scheme 1). N-Glycosidation8 of the
indole7 was carried out by deprotonation with sodium hydride,
followed by addition of readily available 1-chloro-2-deoxy-3,5-
di-O-p-toluoyl-R-D-erythro-pentofuranose9 (8) to give â-N-gly-

coside9 as the sole product. After deprotection of the allyl ester
9, the acid which resulted was condensed with tryptamine under
conventional conditions to give amide10. Regioselective oxida-
tion of the more reactive indole of10 with 2 equiv of DDQ in
aqueous THF afforded the ketone11exclusively.10 For the ensuing
cyclization, the ketone and the amide in11 were both activated
by acetylation of the indole and amide nitrogens to give diacetyl
bisindole.11

Upon treatment with a catalytic amount of DBU and molecular
sieves,12 underwent smooth cyclization to give lactam13
(Scheme 2).12 A nonoxidative photocyclization13 was performed
by exposing lactam13 to sunlight14 in the presence of diisopro-
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Scheme 1a

a Reagents and yields: (a) allyl bromide, K2CO3, DMF, 23 °C, 100
min, 99%; (b) (i) NBS, CCl4, 23 °C, 90 min, 80%; (ii) NaH, MeCN, 23
°C, 10 min;8, 23 °C, 30 min, 97%; (c) (i) Pd(PPh3)4, Ph3P, pyrrolidine,
CH2Cl2, 23 °C, 1 h; (ii) WSCD, tryptamine, CH2Cl2, 23 °C, 15 min,
72% (2 steps); (iii) DDQ (2.2 equiv), THF/H2O (9:1), 0°C, 30 min, 93%;
(iv) 2,6-lutidine (2 equiv), DMAP (0.2 equiv), Ac2O, 60 °C, 8 h, 78%.

Scheme 2a

a Reagents and yields: (a) DBU (0.1 equiv), MS 4 Å, THF, 60°C,
2.5 h, 92%; (b)i-Pr2NEt, hν, CH2Cl2 (2.8 × 10-2 M), 23 °C, 5 h, 96%;
(c) (i) KOH, H2O/MeOH/THF, 23 °C, 45 min, 97%; (ii) I2, Ph3P,
imidazole, THF, 23°C, 1 h, 82%; (iii) DBU, THF, 80°C.
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pylethylamine to provide the desired indolocarbazole14 in near
quantitative yield. Without doubt, the photochemically induced
conversion was promoted by the facile dehydrobromination of
the incipient cyclization product.15 Following hydrolysis of all
the acyl groups in14, the primary alcohol was selectively
converted to the corresponding iodide16by treatment with iodine,
triphenylphosphine, and imidazole.16 Attempts to dehydroiodinate
16 failed to give the desired olefin, and only the undesired
cycloglycoside17 was obtained.

Conversion of iodide16 to olefin 21 was effected by the
conventional, four-step sequence shown in Scheme 3.17 Much to
our dismay, initial attempts to construct the desired cycloglycoside
from the enol ether21 under oxidative or acidic conditions
failed.18 Treatment of21with potassiumtert-butoxide and iodine,
used successfully by Danishefsky in their total synthesis of
staurosporine,6 gave the desired cycloglycoside22 in less than
10% yield. However, upon treatment with iodine, potassium
iodide, and DBU,21 underwent a remarkably smooth iodogly-
cosidation to give the required cycloglycoside22 in 93% yield.19

Radical-mediated deiodination,20 methanolysis of the acetate, and
the subsequent oxidation of the alcohol24 with DCC, Cl2-
CHCO2H, and DMSO furnished ketone25 in high yield.

Transformation of the ketone25 into the corresponding
cyanohydrin under ordinary conditions resulted in the formation
of a diastereomeric mixture. However, only the desired, kinetically
favored cyanohydrin acetate26awas obtained when treated with
hydrogen cyanide and pyridine,21 followed by acetylation.22 Since
attempted conversion of26a to 1 in methanolic HCl gave
primarily ketone25 along with a trace amount of the desired1,
an indirect procedure was adopted. Namely, the nitrile26a was
first converted to amide27 by treatment with gaseous HCl in
formic acid at room temperature.23 Finally, the amide27 was
subjected to alkaline hydrolysis and the resultant acid esterified
with diazomethane to give (+)-K252a (1) (Scheme 4). The
synthetic (+)-K252a proved to be identical with the natural
product24 in TLC behavior as well as in spectroscopic properties
(1H, 13C NMR, IR, MS, [R]D).

In conclusion, the stereocontrolled total synthesis of (+)-K252a
has been achieved in a 23-step sequence from indole-3-acetic acid
with an overall yield of 10%. The established synthetic route
should be amenable to the preparation of a variety of interesting
analogues.
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Scheme 3a

a Reagents and yields: (a) (i) PhSeSePh, NaBH4, EtOH/THF (2:5),
23 °C, 93%; (ii) Ac2O, Py, DMAP, 23°C, 10 min, 98%; (iii)m-CPBA,
THF, 23 °C, 10 min; NEt3, DHP, 80°C, 30 min, 91% (2 steps); (b) KI
(6 equiv), I2 (5 equiv), DBU (2 equiv), THF, 23°C, 40 min, 93%; (c) (i)
n-Bu3SnH, AIBN, MeCN, reflux, 50 min, 98%; (ii) K2CO3, MeOH, 23
°C, 10 min, 90%; (iii) DCC (6 equiv), Cl2CHCO2H (2 equiv), DMSO,
23 °C, 15 min, 99%.

Scheme 4a

a Reagents and yields: (a) HCN (xs), Py (xs), MeCN, 0°C, 15 min;
Ac2O, DMAP, 23°C, 30 min, 99%; (b) HCl, HCO2H, 23°C, 19 h, 88%;
(c) (i) KOH, H2O/MeOH/THF, 100°C, 10 h; (ii) CH2N2, THF, 65% (2
steps).
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